
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

ISSN (Online): 2409-4285 www.IJCSSE.org Page: 291-296

Contextualization of Defect Management in Data Integration

Hassane TAHIR
1
 and Patrick BREZILLON

2

1, 2

LIP6, University Pierre & Marie Curie (UPMC), 4 Place Jussieu, 75005, Paris, France

1
hassanetahir@hotmail.com,

2
patrick.Brezillon@lip6.fr

ABSTRACT
The management of defect tracking is mostly useful for any

software of an organization. In data integration project, as

development of ETL (Extraction, Transformation and

Loading) processes is completed, the testing phase will be

started. If bugs are found, test engineers can log such bugs in a

bug tracking system to the different actors: Developers, DBA

(A database Administrator), etc. For instance, in the case of

database bugs, after the first cycle of bug tracking is

completed, the system will notify the DBA. The DBA can log

in to system and get the bug list with priority. He can then

solve the bug and change the status of that bug in the system.

The problem is that most of the time, only technical factors are

taken into account. Contextual elements about Human and

social factors are not considered (i.e. experience of actors).

Therefore it is important to add the context in which bug

tracking tasks should be performed. This paper proposes to use

“Contextual Graphs” formalism to improve existing

procedures for bug tracking in a data migration project.

Keywords: Context, Contextual Graphs, Data Integration,

Defect tracking, Procedures.

1. INTRODUCTION

Developers, Test Engineers, database and system

administrators use Bug Tracking Systems to record and

track the progress of bugs (defects). Specific features

should be understood to evaluate a bug tacking system.

In data integration project, as development of ETL

(Extraction, Transformation and Loading) processes is

completed, the testing phase will be started. If bugs are

found, test engineers can load log such bugs in a bug

tracking system to the different actors: Developers,

DBA (A database Administrator), etc. For instance, in

the case of database bugs, after the first cycle of bug

tracking is completed, the system will notify the DBA.

The DBA can log in to system and get the bug list with

priority. He can then solve the bug and change the status

of that bug in the system. The problem is that most of

the time, only technical factors are taken into account.

Contextual elements about Human and social factors are

not considered.

Contextual elements are relevant at a given time (e.g.

memory size, hard drives), and the values taken by these

contextual elements at that moment: (memory size:

70%, full, hard drives: HP-1, IBM-23). The DBA often

developed practices to manage these contextual

elements in order to solve the problem at hand. Practices

encompass what the users do with procedures. We can

point two categories of problems: technical and social.

Technical problems can impact the performance of the

entire information system of the company. This includes

problems due to the database, the server, the network

and/or the application. For instance, one of the most

important database problems is when users are unable to

connect to the database because of a locked account,

slow time response or bad performance, and sometimes

because the database is down. Social problems are

mainly due to bad communications and collaborations

with other users. Another example that we can give

concerns some collaboration problems due to the bad

collaboration between DBA and other actors. In some

cases, developers do not cooperate with a DBA to solve

database errors due to a bad application coding. The

reason for this is that developers may not feel

comfortable while their code is being reviewed if their

managers are invited.

Defect tracking and processing must be integrated in the

data migration project life cycle and the testing process.

A defect management process is used to decide what is

to become of software defects, or bugs, found in the

development cycle for migrating data into the target

system. Fig. 1 illustrates the process of defect tracking.

In this example, the prevalent defect, or bug process can

have three basic states:

1. Submitted/Opened

2. Resolved

3. Closed

This work relies on the Contextual-Graphs formalism

[4] for improving bug-tracking process in a data

migration process. The main advantage of Contextual

Graphs is the possibility to enrich incrementally the

system with new knowledge and practice learning

capability when needed. Moreover, a contextual graph is

a good communication tool for helping the different

actors of the project to exchange their experiences and

viewpoints when solving defects. The paper begins by

the description of a case study about data migration

project: actors involved in the defect tracking,

292

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

H. TAHIR and P. BREZILLON

contextual elements. After, we present related works in

the literature. Then we present the main features of the

used approach followed by a presentation of contextual

graph platform. Finally we conclude and evaluate our

work.

Fig. 1. Example of process of defect tracking.

2. A CASE STUDY

This case study presents data migration process where

defects are processed. Data has been processed using

ETL (Extraction, Transformation and Loading). The

ETL functionality includes the following steps (a)

Identifying relevant data in the source systems, (b)

Extracting the required relevant data, (c) Customizing

and integrating data coming from multiple sources into a

common format, (d) Cleaning the resulting data set

according to the database and business rules, and (e)

Propagating and loading of the data into a target system.

The ETL process can involve a great complexity, and

critical operational problems that can appear with bad

and improperly design. Each ETL system depends on a

Database Management System (DBMS), which is

composed of a set of subsystems executing specific

tasks and compete for system resources allocated by the

DBMS (Fig. 2). Actors in the defect tracking of data

migration are: Project Manager of Data Migration (Main

Actor), Developers, DBAs, Business Analysts; In this

case study, we focus on DBA problems. Many questions

may be asked by actors involved in the ETL process.

They concern some of the different contextual elements

that intervene in the different phases of the ETL process

(with their known values).

Fig. 2. ETL process.

When any actor (i.e Developer or a DBA) presents a bug

report, most probably, he is asked many questions.

Some of them are what is the name of the product?

What is the defect? In which component is the defect? In

which module is the defect? In which method the defect

is? in which environment the defect arises? In which

platform the application is created? In which OS the

application runs? The information given by the DBA

who reports defect might be incomplete initially.

The following are examples of defects contextual

elements:

• What is the response time? (i.e. excellent, good or

bad)

• Are performance problems identified?

• Should indexes be dropped and recreated,

respectively before and after each data loading and

how?

Other contextual elements are shown in Table 1.

Table 1: Contextual elements

Contextual element Contextual element Values

Missing Data Bad data from the source
database

Invalid joins

Truncation of Data Invalid field lengths on target
database

Data Type Mismatch Source data field not configured
correctly

Null Translation Absence of the null translation in
the transformation

Wrong Translation Incorrectly translated the source
field

Misplaced Data Wrong mapping between the
source and target data

Extra Records Developer did not include filter in
their code

Not Enough Records Developer had a filter in their
code

Undocumented
Requirements

Undocumented requirements not
understood by actors.

Duplicate Records No appropriate code to filter out
duplicate records

Numeric Field Precision Developer rounded the numbers
to the wrong precision

293

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

H. TAHIR and P. BREZILLON

The following section discusses some of the commonly

used approaches to intelligent assistance for database

management.

3. RELATED WORK

Defect tracking is a very important activity in software

development. Its helps to reduce the cost, resources and

time required for rework. Terefore defect detection and

prevention are two stages of defect management which

helps in improving the quality of software. This section

is concerned with some of the related work in software

engineering and database management. Many solutions

and have been proposed to deal with database

administration and incident management as discussed in

[5], [7]. Gopalakrishnanm has made analysis of defect

detection and prevention techniques which are employed

in Agile development [8]. For this analysis data has been

gathered from five projects of leading software

development companies. The result of the research is

that on an average 13 % to 15% of inspection and 25% -

30% of testing out of entire project effort time is

required for 99% - 99.75% of defect elimination. (O.

Don, 2003) presented a study of how agile development

environment involves defect detection and its prevention

once a defect is detected [6]. He has discussed two wide

categories of defect management: requirements defects

and implementation defects. He concluded that Agile

practices lack effective defect management but actually

agile developments reduce defects in first place. These

categories include finding defects in all types of

requirements and technical implementation of a project.

However context about social factors are not taken into

account. R J RG discussed the repeated and

sustainable discovery process, handling, and treatment

of quality defects in software systems [9]. Information

about quality defects found in source code has been

stored using an automation language. Automation

language also represents the defect and treatment history

of small parts of the software products. (S. Abhiraja et

al, 2012) discussed in his paper [1] that quality defects

have been detected using test case and preventive

actions to improve the quality of software process. If the

software process is not working correctly then defect is

found. Some preventive actions have been employed to

avoid the defects like defects classification and

discovering the root causes of the defects. (V. Suma,

2011) presented a paper about Defect Management

Strategies in Software Development [14]. He described

in his research that inspection is significant to discover

the static defect close to the origin. (Rajni et al, 2013)

presented a study to use defect tracking and defect

prevention for the improvement of the quality [12],

Testing is performed when the software is developed

and defects found are removed using defect prevention.

According to Rajni [12], Defect Tracking System still

needs improvement and a lot of research is required to

mature the Defect Tracking Systems. (Sydney et al.,

2009) has used a different technique that is The Defect

Management Meeting [15]. In this meeting team

members communicate face to face. The meeting is

time-boxed to review and prioritize all new defects

found. Time-boxing is particularly very helpful when

request for change arises late in project and risk of

defects increases due to chaning requirement. Main goal

of this meeting is to review existing defects.

(K. Ansar, 2013) proposes defect detection and analysis

to discover the root causes of potential defects and

prevention technique to remove defects [2]. He proposed

a defect management process model to produce quality

products. This model has been proved very valuable to

handle harmful defects. (K. Macros, T. Guilherme,

2008) presented a unique concept of Defect causal

analysis (DCA) to recover software development

process and to reduce amount of potential defects [10].

The above solutions cannot always successfully handle

all defect tracking tasks in multitude of specific new

situations and contexts that differ from the set

procedures.

• Only physical parameters and sensors are considered;

• Not Human-Centered Context (i.e. Social Context:

DBA Profile, experience, Knowledge, Conflict with

DEVELOPERS, degree of collaboration between DBA

and other shareholders…

• Bad Context Sharing (i.e. Context is implicit). Defects

are not always understood by all actors because

contextual elements are not explicit.

For these reasons, we are interested to take context into

consideration and incorporate it in the defect tracking

procedures. The following section presents how the

Contextual Graphs Formalism can help in the

contextualization of defect tracking especially when

many actors are interacting with each other (i.e. sharing

context)

4. CONTEXTUAL-GRAPHS FOR

DEFECT TRACKING

4.1 Brief Description of Contextual graphs

A contextual graph (CxG) allows the representation of

the different ways to solve a problem. It is a directed

graph, acyclic with one input and one output and a

general structure of spindle. Each path in a CxG

corresponds to a practice, a way to fix the problem. Fig.

3 provides the definition of the four elements in a

contextual graph. A more detailed presentation of this

294

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

H. TAHIR and P. BREZILLON

formalism and its implementation can be found in [3],

[4] and [11].

A contextual graph is composed of the following

elements: actions, contextual elements, activities and

temporal branching.

An action is the building block of contextual graphs at

the chosen granularity. An action can appear on several

paths but it will be in different contexts.

A contextual element is a couple of nodes, a

contextual node and a recombination node. A contextual

node has one input and N branches [1, N] corresponding

to the N instantiations of the contextual element already

encountered. The recombination node is [N, 1] and

shows that, once items on the branch between the

contextual and recombination nodes has been processed,

it does not matter to know which branch was followed.

Contextual elements are used to represent and

implement context about the different events occurring

in a given situation.

An activity is a contextual graph by itself that is

identified by participants because it appears on different

paths and/or in several contextual graphs. This recurring

sub-structure is generally considered as a complex

action. An activity is a kind a contextualized task that

can be aggregated in a unit or expanded in a sub graph

according to the needs [13].

A temporal branching expresses the fact (and reduces

the complexity of the representation) that several groups

of actions must be accomplished but that the order in

which action groups must be considered is not

important, or even could be done in parallel, but all

actions must be accomplished before continuing the

practice development. The temporal branching is the

expression of a complex contextual element at a lower

granularity of the representation.

Fig. 3. Elements of a contextual graph.

Contextual graphs represent the set of known practices

(strategies) in order to solve a given problem. They also

allow incremental acquisition of practices and provide

an understandable way to model context-based

reasoning. A practice is the path from input to the output

of a contextual graph. The problem solving process is

guided throw a specific path by the evolution of context

over time. Adopting a given practice or strategy among

the others is dictated by the values of the different

contextual elements forming the situation. However, it is

not always obvious for a user to select one of these

values. For example, in the area of database

administration, to solve a serious performance problem

within a given critical situation and context, a DBA

(Database Administrator) may have different options

when asking this question: what causes the slow

response time of the system? Is it a network problem? Is

it a bad database configuration? Is it a bad query in the

application programs? Etc.

User practices are added and stored in an experience

database. They may differ from each other because of

their contexts that are slightly different where users used

different actions at a step of the problem solving. The

process of practice acquisition by the CxG system

concerns the new action to integrate and the contextual

element that discriminates that action with the previous

one. The integration of the new practice requires either

adding a new branch on an existing contextual node, or

introducing of a new contextual node to distinguish the

alternatives. The phase of incremental acquisition of

practices relies on interaction between the CxG system

and the users in order to acquire their expertise, which

consists of a context-based strategy and its evolution

along the process of the problem solving.

4.2 Sharing Context: Data Project Manager and

DBA

Sharing context in defect tracking means that actors’

contexts have a non-empty intersection. The shared

context corresponds to the validity context of the design

focus. It is built from contextual elements coming from

the different members. The shared-context building

results from an incremental enrichment of contextual

elements coming from individual contexts. Thus, a

contextual element proposed by an actor will enter the

shared context if accepted (validated) by other actors.

Individual contexts are mental representations of the

design focus and of its validity context (the shared

context). A contextual element provided by an actor

must be integrated in other experts’ mental

representation, i.e. each expert must find a translation of

this shared contextual element in his mental

representation.

The following contextual graphs present the views of

the Data Project Manager (Main Actor) and one of the

team members (DBA, a Database Administrator). Fig. 4

illustrates the Project Manager view

295

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

H. TAHIR and P. BREZILLON

Fig. 4. Contextual graph for defect tracking (from Project Manager

View).

Another representation (Fig. 5) is that extracted from the

viewpoint of a database administrator and how is

solving the defect. This can be helpful for sharing

context. Other examples using contextual are graphs can

be found in our research papers [16] and [17].

Fig. 5. Contextual graph for defect tracking from DBA View.

4. CONCLUSION

This paper has presented how to contextualize the

management of defect tracking in data integration. We

have used Contextual graphs formalism to illustrate how

it is easy to represent different viewpoints and practices

when actors are communicating and interacting to

resolve defect. Our study is in the framework of

designing context-based systems for defect tracking. It

can also be extended to several other computing areas

such as monitoring systems, computer security and

network management.

REFERENCES

[1] S Abhiraja et al “Defect Prevention Technique in
Test Case of Software Process for Quality

Improvement” Int J Comp Tech Appl Vol 3 1 6-

61, 2012.

[2] K Ansar “Establishing a Defect Management Process

Model for Software Quality Improvement”

296

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016

H. TAHIR and P. BREZILLON

International Journal of Future Computer and

Communication, Vol. 2, No. 6, December 2013.

[3] P Brézillon “Task-realization models in Contextual

Graphs” in Modeling and Using Context (CONTEXT-

05), A.Dey, B.Kokinov, D.Leake, R.Turner (Eds.),

Springer Verlag, LNAI 3554, pp. 55-68 (2005)

[4] P. Brézillon, and J.-C Pomerol “Contextual

knowledge and proceduralized context” Proceedings

of the AAAI-99 Workshop on Modeling Context in AI

Applications, Orlando,Florida, USA, July. AAAI

Technical Report (1999)

[5] A Carneiro and R Passos et al “DBSitter: An
Intelligent Tool for Database Administration” Berlin-

Heidelberg, Springer-Verlag (2004)

[6] O Don “Defect Management in an Agile

Development Environment” The Journal of Defense

Software Engineering, September 2003.

[7] S Elfayoumy and J Patel “Database Performance
Monitoring and Tuning Using Intelligent Agent

Assistants” In: H R Arabnia L Deligiannidis, R.R.

Hashemi (eds). Proceedings of the 2012 International

Conference on Information & Knowledge Engineering,

IKE 1 WORLDCOMP’1 July 16-19, Las Vegas

Nevada, USA, CSREA Press (2012)

[8] N Gopalakrishnanm “Effective Defect Prevention
Approach in Software Process for Achieving Better

Quality Levels” World Academy of Science

Engineering and Technology 42, 2008.

[9] R. JÖRG, "Handling of Software Quality Defects in

Agile Software Development", Fraunhofer Institute for

Experimental Software Engineering (IESE), 2005.

[10] K Macros and T Guilherme “Towards a Defect
Prevention Based Process Improvement Approach”

34th Euromicro Conference Software Engineering and

Advanced Applications, IEEE, 2008, DOI

10.1109/SEAA.2008.47.

[11] J.-C. Pomerol, P. Brézillon “Context proceduralization

in decision making” In: Modeling and Using Context

(CONTEXT-03), P. Blackburn, C. Ghidini, R.M.

Turner and F. Giunchiglia (Eds.). LNAI 2680, pp. 491-

498, Springer Verlag (2003)

[12] Rajni et al., "Defect Analysis and Prevention

Techniques for Improving Software Quality",

International Journal of Advanced Research in

Computer Science and Software Engineering, 2013.

[13] J F Sowa “Knowledge Representation: Logical
Philosophical and Computational Foundations”

Brooks Cole Publishing Co., Pacific Grove, CA, (2000)

[14] V. Suma,"Defect Management Strategies in Software

Development", Wseas Transactions on Computer,

2011.

[15] Sydney et al., "Agile-Why the fear", Planit Software

Testing, 2009

[16] H Tahir and P Brézillon “Contextual graphs platform

as a basis for designing a context-based intelligent

assistant system” In: P Brézillon P Blackburn and

R. Dapoigny (Eds.): CONTEXT 2013, LNAI 8175, pp.

259-273, 2013.

[17] H Tahir P and Brézillon “Individual decision making
based on a shared context” in Frontiers in Artificial

Intelligence and Applications, DOI: 10.3233/978-1-

61499-073-4-63

[18] Conference: International Conference on Decision

Support Systems: “Fusing DSS into the Fabric of the

Context” At Anávissos Greece June 1 .

