
International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016                       
 

ISSN (Online): 2409-4285           www.IJCSSE.org          Page: 260-264 

  

Detecting Inconsistencies in Multi-view UML Models  

Vanessa Weber
1
, Kleinner Farias

2
, Lucian Gonçales

3
, Vinícius Bischoff

4
 

 
1, 2, 3, 4

 Interdisciplinary Graduate Program in Applied Computing (PIPCA), University of Vale do Rio dos Sinos 

(UNISINOS), São Leopoldo, Rio Grande do Sul, Brazil 

1
weber.nessa@gmail.com, 

2
kleinnerfarias@unisinos.br, 

3
lucianjosegoncales@gmail.com, 

4
viniciusbischoff@gmail.com 

 

ABSTRACT 
Inconsistencies in conflicting multi-view UML models can be 

major obstacles to the quality and productivity of software 

development. In the current literature it can be observed that 

some tools were developed to support the detection of 

inconsistencies, but none of them are still consolidated. In 

addition, many of these tools only evaluate syntactic 

inconsistencies, not considering semantic ones. The tools 

available are often unable to detect syntactic and semantic 

inconsistencies in conflicting multi-view UML models. To 

address this issue, we propose DIUML, a tool that includes: (i) 

detection of inconsistencies in multi-view UML models 

through design metrics; (ii) detection of syntactic and semantic 

inconsistencies, indicating objects and classes affected by 

them; and (iii) evaluation of the severities of each type of 

inconsistency detected. Our preliminary evaluation indicated 

that DIUML was able to detect inconsistencies in multi-view 

UML models with 337 elements from 10 different 

combinations of UML class and sequence diagrams. 

 

Keywords: Inconsistencies Detection, Multi-view UML 

Models, Tool. 

1. INTRODUCTION 

Unified Modeling Language (UML) is the de facto 

standard for object-oriented software modeling [3, 4, 12] 

and has been widely used to represent design projects 

through a multi-view approach. According to [12], the 

UML seeks to advance the state of the industry by 

allowing the interoperability of the visual object-

oriented modeling tool. To do this, the UML 

specification provides a set of human-readable notation 

elements, as well as rules for combining them into 

various types of diagrams, considering structural and 

behavioral aspects of the software system under 

development. 

In collaborative software development, for example, 

virtual teams can simultaneously work on partial views 

of a general architecture by editing structural aspects, 

e.g., manipulating UML class diagrams [15, 16, 17], 

while team members can edit behavioral aspects, e.g., 

modifying UML sequence. 

However, at some point they need to consider both 

aspects to fully understand design decisions for creating 

an overview of the overall architecture. To do this, 

developers must obtain information from UML class 

and sequence diagrams. Unfortunately, the diagrams end 

up suffering from conflict problems due to contradicting 

modifications realized in parallel in overlapping model 

elements. This means that modifications made in the 

UML class diagram can generate a mismatch with 

model elements in the UML sequence diagram. 

Therefore, developers have to lead with design models 

with inconsistencies. Empirical studies (e.g., [3, 9]) 

report that inconsistencies in multi-view UML design 

models can harm the correct understanding of design 

decision, leading to misinterpretation of them. In [1], the 

authors report that the lower quality of UML models is 

correlated with lower quality of the source code. 

To overcome these issues, this paper presents the 

DIUML, a tool that detects inconsistencies in multi-view 

UML models. Developers and system analysts can 

benefit from using DIUML when performing software 

maintenance tasks for implementing change requests, or 

even developing new features. Detecting inconsistencies 

in multi-view UML models, developers will be able to 

seek solutions to the inconsistency problem, rather than 

taking into account improper representations of design 

decisions, which can lead to misinterpretations.   

To detect inconsistencies in conflicting multi-view UML 

models, the novelty of DIUML is the detection of 

inconsistencies in multi-view UML models through 

design metrics [18, 19], the detection of syntactic and 

semantic inconsistencies, indicating objects and classes 

affected by them, and the evaluation of the severities of 

each type of inconsistency detected. The DIUML is 

implemented in C # through Visual Studio and runs as 

an executable. Preliminary results of the use of DIUML 

indicated that it was able to detect inconsistencies in 

UML models with 337 elements of 10 different UML 

class and sequence Diagrams. These results indicate that 

our tool can improve the quality and productivity of 

software development by mitigating the 

misinterpretation problem of design decisions caused by 

undetected inconsistencies.  



261 

 

 

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016                    
 

V. Weber et. al 
 

The remainder of the paper is organized as follows. 

Section 2 outlines the main concepts that are going to be 

used and discussed throughout the paper. Section 3 

briefly compares this work with others, presenting some 

differences and commonalities. Section 4 presents the 

proposed DIUML tool. Section 5 discusses the design 

and implementation details. Section 6 presents a 

scenario of use of the proposed tool. Section 7 presents 

some concluding remarks and future work. 

2. BACKGROUND 

We have identified two broad categories of 

inconsistencies, such as: (1) syntactical inconsistencies 

that arise when project models are not in accordance 

with the metamodel language; and (2) semantic 

inconsistencies where the meaning of the model element 

does not correspond to the actual design model. Current 

literature has identified a number of inconsistencies 

(e.g., [8, 9]), which have also been used in previous 

empirical studies reported in [9]: 

• Abstract classes in the sequence diagram 

(CaSD): the UML metamodeling [12] makes it clear 

that abstract classes should not be represented in the 

sequence diagram, since single instances of concrete 

classes are represented in the following diagram 

carefully to represent the method call exchanged 

between them. This is due to abstract classes cannot 

be instantiated, so objects derived from abstract 

classes can not be produced [8]. 

• Unnamed message (EnN): each message sequence 

diagram must have a specific name; otherwise, it is 

impossible to define which methods should be called 

in the class diagram [6, 8]. 

• Message without method (EcM): objects in the 

sequence diagram of message exchange to execute 

scenarios. These messages are actually calling 

method, which must be defined in the class diagram 

[6]. 

• Multiple class definitions with the same name 

(Cm): When a class is instantiated more than once 

with the same name in the same or different diagrams 

in a single UML model. 

• Definitions of multiple objects with the same 

name (Om): for inconsistency of this type, we can 

see more than one object with the same name in the 

same sequence diagram. 

• Class not instantiated in SD (CnSD): when there 

is an object instantiated in the UML sequence 

diagram for all the classes present in the class 

diagram, it can be said that there is an inconsistency 

of this type. 

• Object not instantiated in CD (CnCD): when for 

an object instantiated in the sequence diagram there is 

no corresponding class in the UML class diagram, it 

results in this type of inconsistency. 

• Message in the wrong direction (ED): this type of 

inconsistency occurs when an object in an UML 

sequence diagram calls a method of a wrong object. 

This is a case where the message name does not 

match its method. 

3. RELATED WORKS 

Researchers and practitioners have widely recognized 

that metrics can be used as indicator to identify 

inconsistencies and measure the degree of 

incompleteness of UML models [8]. Thus, design 

metrics can help to measure design models by 

quantifying key features, mainly ones previously 

defined in UML metamodel. However, design metrics 

have not been used for supporting the detection of 

inconsistencies of UML models. Instead, authors have 

focused on using syntactic [13], and semantic [5] facets 

to verify inconsistencies on design models only.  

Moreover, there is a lack of automated methods for 

checking the inconsistencies of multi-view UML 

models, before developers use them in production 

environment. In [11] authors propose a tool that takes 

into account multi-view models for verifying 

inconsistencies. But, in practice, the current literature is 

still limited to techniques that check inconsistencies in 

UML class diagram [14], or in UML sequence diagram 

[10], not both. 

In [20, 21], the authors present a literature review about 

model comparison, highlighting the main techniques in 

the current literature. In [22], the authors come up with, 

in turn, a technique to compare UML model aided by 

ontologies. 

To sum up, little has been done to detect the 

inconsistencies using well-established design metrics. 

Therefore, to the best of our knowledge, this work is the 

first to (1) consider metrics for detecting the 

inconsistencies of UML models, and (2) provide a tool 

that execute the inconsistency detection automatically. 

4. DIUML TOOL 

The process of detecting inconsistencies in UML models 

of DIUML has two premises. The first includes the 

detection of inconsistencies in multi-view UML models 

through metrics and algorithms using mathematical 

logic. The second classifies each type of inconsistencies 



262 

 

 

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016                    
 

V. Weber et. al 
 

detected based on the level of severity (i.e., low, 

medium and high), thus supporting decision making by 

developers and system analysts. 

The detection of inconsistencies in multi-view UML 

models uses measures of well-established design 

metrics. These measures are computed using the 

SDMetrics
1
, a software design metrics tool for UML 

models. The measures are stored in XML files. For a 

syntactic and semantic validation of the combination of 

UML class and sequence diagrams, the DIUML tool 

stores the names of the elements (class or object), the 

methods and messages, the relationships between the 

elements, and the classes have the property isAbstract 

equal to true. Code 1 shows how this procedure is 

computed. 

Code. 1. Reading logic of XML file variables 

1. Var class = new Class(); 

2. Var object = new object(); 
3. Class.Name = ElementClasse.Attribute(“name”). Value; 

4. Class.Abstrata = bool.Parse(elementClasse.Attribute(      

“isAbstract”).Value); 
5. Class.Id = ClassClasse.Attribute(“xmi.id”).Value; 

6. Var relationships = elementClasse.Descendants(ns + 
“ModelElement.clientDependency”).FirstOrDefault(); 

The DIUML tool detects the two-macro types of 

inconsistencies in the multi-view models, i.e., syntactic 

and semantic inconsistencies. For the detection of 

syntactic inconsistencies, simple metrics such as 

counters and paired combinations were used. For the 

detection of semantic inconsistencies, it was required to 

use the values of properties, such as names, methods, 

messages and IDs. Once the XML files of the class and 

sequence diagrams have been read, the tool applies, in a 

linear fashion, each of the validations of algorithms for 

the different types of inconsistencies. Code 2 shows how 

this validation is performed.  

Code. 2. Example of procedure to detect inconsistency. 

1. Public void InconsistencyTypeCnCD() { 

2.       Var inconsistent = Sequence.Classes.Where(c =>! Class.   
      Classes.Any(s => s.Name == c.Name)); 

3.     Foreach (var inconsistent in inconsistent) { 

If (! Inconsistent.Insistencies.Any (i => i ==     
InconsistencyType .CnCD)) {      

4.                  Inconsistent.Insistencies.Add(Inconsistency Type.     

CnCD); }}} 

Code 2 identifies each object in the UML sequence 

diagram and verifies if there is a class in the 

corresponding UML class diagram. If the result is 

different from 1 to 1, this type of inconsistency will be 

present. Since the types of inconsistencies in UML class 

and sequence diagrams have been detected, the DIUML 

tool presents the results, including an analysis of the 

severity of each type of inconsistency. Code 3 shows 

how the severity of different types of inconsistencies 

was computed. 

                                                           
1
 SDMetrics: http://www.sdmetrics.com/ 

Code. 3. Procedure defined to detect inconsistency. 

1. Case Type.Inconsistency.CnSD: 

Case Type.Inconsistency.EnN: 
Case Type.Inconsistency.CnCD:  

{Return “High”;} 

2. Case Type.Inconsistency.EcM: 
Case Type.Inconsistency.ED: 

Case Type.Inconsistency.CaSD: 

Return “Medium”;} 
3. Case Type.Inconsistency.Cm: 

Case Type.Inconsistency.Om: 

{Return “Low”;} 

Thus, the tool implements the reading, validation and 

interpretation of the XML files and applies the eight 

types of algorithms to detect inconsistencies, thus 

generating the final result of the detection of 

inconsistencies and classifying the severities, in order to 

allow the interpretation of the data. Having the severity 

of the inconsistencies at hand, developers can prioritize, 

or even overlook the inconsistency detected.  

5. DESIGN AND IMPLEMENTATION 

DETAILS 

Figure 1 shows a representation of the DIUML design, 

and how its main elements are related. The tool has two 

inputs, i.e., UML class and sequence diagrams, both are 

XML files. These XML files can be generated from 

UML modeling tools by exporting the diagrams used in 

XML. 

 

 

Fig. 1. DIUML Design. 

The above entries are processed by DIUML’s engine to 

detect inconsistencies in the multi-view UML models, 

comparing the data between the class and sequence 

diagrams provided. The DIUM was developed with the 

Microsoft Visual Studio platform using the C# language. 

It reads the XML files and stores in memory the data 

collected. The tool can be run in Windows or Linux 

platforms. After XML files have been read, the DIUML 

tool analyzes each type of inconsistency (listed in 



263 

 

 

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016                    
 

V. Weber et. al 
 

Section 2). The next step is to organize the detected 

inconsistencies in a grid. Code 4 presents the procedure 

defined to generate a grid with the list of inconsistencies 

detected.  

Code. 4. Procedure to display the detected inconsistency in a grid. 

1. Type = diagramType == diagramType.Class? “Class”: “Object” 
2. Name = class.Name 

3. Inconsistency = inconsistencyHelper.ObterInconsistency 

(inconsistency? “NameInconsistencies”) 
4. Severity = inconsistencyHelper.obterGravity (inconsistency? 

“High”: “Medium”: “Low”) 

6. SCENARIO OF USE 

To run DIUML, we need to provide the UML class and 

sequence diagrams in XML format, as described in 

section 5. Input files do not need to be in a specific 

location on the machine because the tool allows the 

search the files using the explorer standard. The required 

entries are the Class and Sequence Diagrams in XML 

format, which can be generated by the UML modeling 

tool itself, such as Astah Pro [3] or Enterprise Architect 

[11]. 

The tool does not need to be installed on the user’s 

computer and does not require any database 

configuration, since it is an executable file. This makes 

it easy to use on different computers and environments, 

such as Windows and Linux operating systems. The 

DIUML does not require any settings or parameter 

changes. The user just locates and run the executable 

file, namely DIUML.exe.  

To illustrate the use of the tool, the XML files of the 

Class and Sequence Diagrams presented in Figure 2 and 

Figure 3 will be read and analyzed: 

 

 

Fig. 2.  DIUML Class Diagram. 

 

Fig. 3.  DIUML Sequence Diagram. 

After the tool has been started, the DIUML shows the 

screen shown in Figure 4, in which the user must inform 

the two diagrams that will be evaluated. 

 

 

Fig. 4.  DIUML Files Selector. 

When the user selects the “Importar” option, the tool 

automatically reads the XML files and stores in the local 

memory. Once the reading and detection of the 

inconsistencies is done, the tool presents the screen 

shown in Figure 5, i.e., a grid with the elements in 

which inconsistencies were found and which 

inconsistencies were detected, as well as the severity of 

each type of inconsistency. 

 

Fig. 5.  DIUML Output. 



264 

 

 

International Journal of Computer Science and Software Engineering (IJCSSE), Volume 5, Issue 12, December 2016                    
 

V. Weber et. al 
 

7. CONCLUSIONS AND FUTURE WORK 

This article presented the DIUML, a tool to detect 

inconsistencies in multi-view UML models. Our initial 

results indicated that DIUML was able to properly 

detect the inconsistencies explained in Section 2, 

providing concrete evidence of tool usefulness. As a 

future work, we seek to adjust the tool so that the code 

of detection of inconsistencies can become incremental 

and allow the configuration of new types of 

inconsistencies. 

8. ACKNOWLEDGMENTS 

This work was funded by CNPq Universal Project 

14/2013 (grant number 480468/2013-3), Brazil. 

REFERENCES 

[1] A. Nugroho, B. Flaton, M. Chaudron, “Empirical 

analysis of the relation between level of detail in UML 

models and defect density”. In: 11th international 

conference on Model Driven Engineering Languages 

and Systems. Springer, 2008, pp. 600-614. 

[2] Astah Pro. Available on <http://www.astah.net/edition 

s/professional>. 

[3] M. Chaudron, W. Heijstek, A. Nugroho, “How 

effective is UML modeling?”. Software and Systems 

Modeling 2012, Vol. 11, n. 4, pp. 571-580. 

[4] W. J. Dzidek, E. Arisholm, L. C. Briand, 2008. “A 

realistic empirical evaluation of the costs and benefits 

of UML in software maintenance”. IEEE Transactions 

on Software Engineering, 2008, vol. 34, n. 3, pp. 407-

432. 

[5] A. Egyed, “Automatically detecting and tracking 

inconsistencies in software design models”. IEEE 

Transactions on Software Engineering. 2011. Vol. 37 

n. 2, pp. 188-204. 

[6] K. Farias, A. Garcia, J. Whittle, C. Chavez, C. Lucena, 

“Evaluating the effort of composing design models: a 

controlled experiment”. Software & Systems 

Modeling, 2015, vol. 14, n. 4, pp. 1349-1365. 

[7] Enterprise Architect. <http://www.sparxsystems.com/ 

products/ea/> 

[8] C. Lange, “Assessing and improving the quality of 

modeling a series of empirical studies about the UML” 

Ph.D. thesis, Technische Universiteit Eindhoven, 

Eindhoven. 2007. 

[9] C. Lange, M. Chaudron, “Effects of defects in UML 

models: an experimental investigation.” In: 28th 

international Conference on Software Engineering. 

2006. Shanghai, China, pp. 401-411. 

[10] X. Li, J. Lilius, T. Centre, C. Science, “Checking 

compositions of UML sequence diagrams for timing 

inconsistency”. In: 7th Asia-Pacific Software 

Engineering Conference (APSEC). 2000. pp. 154-161. 

[11] R. E. Lopez-Herrejon, A. Egyed, “Detecting 

inconsistencies in multi-view models with variability.” 

In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. 

(Eds.), European Conference on Modelling 

Foundations and Applications. 2010. Paris, France, pp. 

217-232. 

[12] OMG, 2015. UML: Infrastructure specification, 

version 2.5. URL 

http://www.omg.org/spec/UML/2.5/PDF 

[13] A. Reder, A. Egyed, “Computing repair trees for 

resolving inconsistencies in design models.” In: 

Proceedings of the 27th IEEE/ACM International 

Conference on Automated Software Engineering. ASE 

2012. ACM, New York, NY, USA, pp. 220-229. 

[14] S. S. Satish, S. R. Shashikant, V. K. Sambhe, R. B. 

Shelke, G. Kocharekar, “A minimum cardinality 

consistency-checking algorithm for UML class 

diagrams.” In: International Conference and Workshop 

on Emerging Trends in Technology. ICWET '10. 2010 

pp. 222-223. 

[15] K. Farias, A. Garcia, J. Whittle, C. Lucena, “Analyzing 

the Effort of Composing Design Models of Large-Scale 

Software in Industrial Case Studies”. 16th International 

Conference on Model-Driven Engineering Languages 

and Systems (MODELS'13), pp. 639-655, Miami, 

USA, September 2013. 

[16] E. Guimarães, A. Garcia, K. Farias, “On the Impact of 

Obliviousness and Quantification on Model 

Composition Effort”. 29th Symposium On Applied 

Computing (SAC.14), Gyeongju, Korea, March, 2014. 

[17] K. Farias, A. Garcia, J. Whittle, C. Chavez, C. Lucena, 

“Evaluating the Effort of Composing Design Models: 

A Controlled Experiment”. 15th International 

Conference on Model-Driven Engineering Languages 

and Systems (MODELS'12), Vol. 7590, pages 676-

691, Innsbruck, Austria, 2012.  

[18] K. Farias, A. Garcia, J. Whittle, “On the Quantitative 

Assessment of Class Model Compositions: An 

Exploratory Study”. In: Empirical Studies of Model-

Driven Engineering (ESMDE'08) co-located 

MODELS'08, Vol. 1, pp. 1-10, Toulouse, France, 

2008. 

[19] K. Farias, A. Garcia, C. Lucena, “Effects of Stability 

on Model Composition Effort: an Exploratory Study”. 

Journal on Software and Systems Modeling, Vol. 13, 

No. 4, pages 1473–1494, 2014.  

[20] L. Gonçales, K. Farias, M. Scholl, T. C. Oliveira, M. 

Veronez, “Model Comparison: a Systematic Mapping 

Study”. 27th International Conference on Software 

Engineering and Knowledge Engineering, pages 546-

551, Pittsburgh, PA, USA, July, 2015. 

[21] L. Gonçales, K. Farias, M. Scholl, M. Veronez, T. C. 

Oliveira, “Comparison of Design Models: A 

Systematic Mapping Study”. International Journal of 

Software Engineering and Knowledge Engineering, 

Vol. 25, pages 1765-1770, 2015. 

[22] K. Oliveira, K. Breitman, T. Oliveira, “Ontology Aided 

Model Comparison”. 14th IEEE International 

Conference on Engineering of Complex Computer 

Systems (ICECCS'09), pp. 78-83, Potsdam, Germany, 

2009. 


